Spectral Graph Clustering
نویسنده
چکیده
Spectral clustering is a powerful technique in data analysis that has found increasing support and application in many areas. This report is geared to give an introduction to its methods, presenting the most common algorithms, discussing advantages and disadvantages of each, rather than endorsing one of them as the best, because, arguably, there is no black-box algorithm, which performs equally well for any data. We present results from previous studies and conclude that methods based on Ncut and multiway are most promising for general application.
منابع مشابه
A survey of kernel and spectral methods for clustering
Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hype...
متن کاملLarge-Scale Spectral Clustering on Graphs
Graph clustering has received growing attention in recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly more challenging to identify clusters. In this paper we propose an efficient clustering algorithm for la...
متن کاملOn defining affinity graph for spectral clustering through ranking on manifolds
Spectral clustering consists of two distinct stages: (a) construct an affinity graph from the dataset and (b) cluster the data points through finding an optimal partition of the affinity graph. The focus of the paper is the first step. Existing spectral clustering algorithms adopt Gaussian function to define the affinity graph since it is easy to implement. However, Gaussian function is hard to...
متن کاملLearning Deep Representations for Graph Clustering
Recently deep learning has been successfully adopted in many applications such as speech recognition and image classification. In this work, we explore the possibility of employing deep learning in graph clustering. We propose a simple method, which first learns a nonlinear embedding of the original graph by stacked autoencoder, and then runs k-means algorithm on the embedding to obtain cluster...
متن کاملA Shortest Path Similarity Matrix based Spectral Clustering
This paper proposed a new spectral graph clustering model by casting the non-categorical spatial data sets into an undirected graph. Decomposition of the graph to Delaunay graph has been done for computational efficiency. All pair shortest path based model has been adapted for the creation of the underlying Laplacian matrix of the graph. The similarity among the nodes of the graph is measured b...
متن کاملSpectral Clustering for Complex Settings
of the Dissertation Spectral Clustering for Complex Settings Many real-world datasets can be modeled as graphs, where each node corresponds to a data instance and an edge represents the relation/similarity between two nodes. To partition the nodes into different clusters, spectral clustering is used to find the normalized minimum cut of the graph (in the relaxed sense). As one of the most popul...
متن کامل